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1 Introduction

There have been many disruptions to supply chains in recent years, as factors such as

the COVID-19 pandemic and Russian invasion of Ukraine have changed trade patterns and

caused fluctuating prices. Volatility in trade costs is one source of supply chain disruption,

including spikes in shipping costs and changes in tariff rates. This paper describes and

employs two methods to estimate the impact of trade cost volatility on U.S. supply chains,

using plastic products and light truck manufacturing in an application. First, an econometric

model is used to estimate the relationship between trade cost volatility and sourcing of U.S.

imports. Then we introduce a partial equilibrium model of the upstream plastic industry and

downstream light truck manufacturing industry in the United States. To measure the impact

of plastic trade cost volatility on downstream light truck manufacturing, we run a Monte

Carlo simulation using a historical distribution of trade costs as model inputs. This model is

further used to understand how a reduction in historical trade cost volatility translates into

a reduction in volatility in downstream outcomes.

The paper finds that a one percent increase in a country’s trade cost volatility over

time is associated with about a 0.7 percent reduction in U.S. imports of plastic products,

suggesting that import sourcing changes following an increase in the volatility of trade costs.

Then, the Monte Carlo simulation shows how plastics trade cost volatility flows through

the light truck manufacturing supply chain. Further, plastics trade cost volatility in the

Monte Carlo simulation is reduced in 10 percent increments to understand how a reduction

in volatility in upstream inputs would affect downstream truck manufacturing. We find

that each subsequent reduction in plastics trade cost volatility leads to a roughly constant

reduction in volatility in light truck manufacturing output.
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2 Literature Review

This research is related to two areas of the literature: literature on pass-through of up-

stream price changes and literature on trade policy uncertainty. For the former, there are

several papers in the literature that discuss the pass through of price fluctuations into down-

stream prices. Nakamura and Zerom (2010), Bonnet and Villas-Boas (2016), and Shu and

Su (2009) analyze the pass through of upstream cost shocks into prices. Nakamura and Ze-

rom (2010) analyze the determinants of incomplete pass-through of cost shocks, uncovering

the role of markup adjustment and barriers to price adjustment in determining incomplete

pass-through. Bonnet and Villas-Boas (2016) find significant evidence that consumers react

differentially to positive and negative price movements. Shu and Su (2009) find significant

pass-through of exchange rate changes into import prices. In addition, Meyler (2009), Ro-

mano and Scandurra (2012), Chen et al. (2021) and Hollas (1994) examine the pass through

of oil price movements into markets. Of the four, Romano and Scandurra (2012) look at

volatility in oil prices specifically, analyzing the effect of periods of low volatility and high

volatility in oil prices.

There are few studies that analyze pass-through of plastic-specific price movements into

downstream prices, and none to our knowledge that describe the effect of plastics trade

cost volatility specifically. De Mello and Ripple (2017) analyze plastics price dynamics and

whether input costs or downstream demand drive price changes. Hellerstein and Villas-Boas

(2010) analyze pass through of exchange rates on outsourced inputs in the auto industry, a

related downstream industry to what we analyze in this paper. In this paper, we analyze the

pass-through of trade cost volatility in plastics trade into U.S. prices and on downstream-

consuming industries. We present new tools that can be used to measure the impact of trade

cost volatility in supply chains, building on the analyses described above.

The second area of literature related to this research is the trade policy uncertainty
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literature. Handley and Limao (2017, 2022) provide a framework to examine the impact of

trade policy uncertainty on economic outcomes and provide evidence of large effects of policy

uncertainty on economic activity. Graziano et al. (2021) estimate the uncertainty effects of

preferential trade disagreements. Ahmad et al. (2023) estimate the impact of increased policy

uncertainty from Brexit on UK trade in services, and Graziano et al. (2020) examine if Brexit

uncertainty has trade externalities beyond Europe. Finally, Ciuriak et al. (2020) estimate

the effect of binding commitments on services trade. In this paper, we do not model trade

policy uncertainty explicitly and instead focus on observed trade cost volatility in trade data.

As noted in the conclusion, future research could incorporate uncertainty into the model to

examine whether volatility and uncertainty have similar effects on international sourcing.

3 Trade Costs in Plastics Supply Chains

There have been many disruptions in plastics trade in recent years, forcing supply chains

to adjust to factors such as the COVID-19 pandemic, the war in Ukraine, irregular weather

patterns, container shortages, and other logistics issues.1 For the purposes of this research,

we focus on international trade cost disruptions which include volatility in shipping costs

and changes in tariff rates. The modeling analyses presented later in the paper measure the

economic effects of trade cost changes on downstream purchasers of plastics. Many non-trade

cost supply chain disruptions impact trade costs indirectly, such as the increase in oil prices

and shipping costs due to the war in Ukraine. This paper only considers observed changes

in trade costs in the data and not other supply chain disruptions.

Plastics chemical companies reported in a recent survey that transportation costs in-

creased across all modes of transportation in 2021 and 2022 for nearly all survey respon-

dents, leading to disruptions in supply chains for downstream purchasers.2 This can be seen
1For example, see Vakil (2021).
2American Chemistry Council, 2022, “Major supply chain problems persist for chemical manufacturers”
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in shipping data; global shipping rates surged during the COVID-19 pandemic as demand

increased for goods such as computers, cars, and furniture, while the supply of cargo ships

and containers were slow to catch up.3 The Freightos Baltic Index, a global container freight

index, sharply increased in the first two quarters of 2021, followed by a rapid descent in

2022.4 In addition to shipping cost volatility, the United States implemented a 25 percent

tariff on U.S. imports of certain plastic products from China as part of a section 301 investi-

gation on unfair foreign practices affecting U.S. commerce.5 The impact of these trade cost

fluctuations on users downstream in the supply chain is the focus of this paper.

Table 1 lists the top U.S. plastic-consuming industries in 2012. Of the total supply of

plastics product manufacturing (NAICS 3261) in the United States, 4 percent is consumed

by the non-residential maintenance and repair industry (NAICS 230301). As shown in table

1, the light truck manufacturing industry (NAICS 336112) is the third largest consumer of

plastic products in the United States, accounting for 2.4 percent of total U.S. plastic use.

This is the downstream industry chosen for the application of the model presented later in the

paper, and includes companies that manufacture light trucks and utility vehicles including

light duty vans, pick-up trucks, minivans, and sport utility vehicles. In 2012, the purchase

of plastic products comprised about 3.5 percent of total light truck intermediate input costs.

Additionally, about 17 percent of plastic usage in light truck manufacturing was sourced

from imports in 2012.6 Therefore, it is reasonable to assume that recent trade cost volatility

may have an impact on the price of light truck manufacturing in the United States. This

impact is explored in section 5.

at https://www.americanchemistry.com/chemistry-in-america/news-trends/press-release/2022/
major-supply-chain-problems-persist-for-chemical-manufacturers

3For example, see UNCTAD (2022).
4The Freightos Baltic Index represents an average spot rate for 40-foot shipping containers using data

obtained from hundreds of logistical providers.
5See USITC (2023), Economic Impact of Section 232 and 301 Tariffs on U.S. Industries.
6Bureau of Economic Analysis (BEA), “Input-Output Accounts Data,” at https://www.bea.gov/

industry/input-output-accounts-data
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Table 1: Top 10 Downstream Users of Plastic in the United States

NAICS industry name 6-digit NAICS
code

Share of U.S. plastic
consumption, 2012

Non-residential maintenance and repair 230301 4.0%
Soft drink and ice manufacturing 312110 3.5%
Light truck and utility vehicle manufacturing 336112 2.4%
Limited-service restaurants 722211 2.3%
Couriers and messengers 492000 2.2%
State and local government hospitals GSLGH 2.1%
Offices of physicians 621100 2.0%
Other residential structures 2334A0 1.9%
Snack food manufacturing 311910 1.8%
Soap and cleaning compound manufacturing 325610 1.7%

Data source: BEA Input-Output Accounts Data.
Notes: The plastic products included in this calculation are all 6-digit NAICS codes within NAICS 3261
(plastics product manufacturing). Excluded from the list are within-plastic manufacturing consumption.
The BEA use tables at the NAICS 6-digit level were only available as of 2012 so shares may have changed
since then.

To examine trade costs in this section and in the regression analysis below, the analysis

uses a 10-year panel of plastics import data from 2013 to 2022 disaggregated at the NAICS

6-digit level obtained from USITC’s DataWeb.7 Trade costs are determined by the difference

between imports valued at customs value and at the landed duty paid value. The customs

value is the “transaction value” of a good—the price that is actually paid or payable when the

goods are sold for export.8 Landed duty-paid values include trade costs such as insurance,

freight, and tariffs paid in addition to the customs value.

The trade cost factor (τikt) by 6-digit NAICS industry k, country i, and year t are

calculated by dividing the landed duty-paid import value by the customs value. The trade

cost factor is equal to one if there are no trade costs and greater than one if trade costs

exist. Average trade cost µik for each industry k and source country i are calculated for
7https://dataweb.usitc.gov/
8International Trade Administration, "Trade Guide: Customs Valuation," at https://www.trade.gov/

trade-guide-customs-valuation/
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the 10-year period 2013–2022. Volatility in trade costs is measured using the coefficient of

variation (CVik), defined as the standard deviation of trade costs sik divided by the mean

µik for the same period.

Table 2 shows overall volatility in plastics trade costs from 2013–2020, and table 3 shows

sourcing shares and trade cost volatility by country. Plastics trade costs are becoming

significantly more volatile for China, Israel, and Thailand due in part to increased shipping

costs and additional duties imposed by the U.S. on plastic from China. The share of U.S.

imports of plastic from China has declined since 2013, from 40 percent to 38 percent. At the

same time, volatility in trade costs has more than quadrupled. Similarly, Taiwan, Germany,

Japan, and the United Kingdom have seen increases in trade cost volatility and decreases

in sourcing shares. In the opposite direction, the share of U.S. imports from South Korea

increased since 2013 at the same time as a decrease in trade cost volatility. Thailand,

however, shows a different trend: both their sourcing share and trade cost volatility measure

increased during the previous ten years. The extent to which there is a pattern between

sourcing and trade cost volatility is estimated below.

Table 2: Historical Volatility in Trade Costs, 2013–2022

Mean trade cost 1.1052
Standard deviation 0.0323
Coefficient of variation 0.0292

4 Empirical Model

4.1 Econometric Approach

The econometric model employed in this section is based on the approach described in

Riker (2022). The model estimates the relationship between trade cost volatility and import
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Table 3: Historical Volatility in Trade Costs by Country, 2013–2022

Top 10 Sources of
U.S. Imports of
Plastic

Sourcing
share, 2013

(%)

Sourcing
share, 2022

(%)

Coefficient of
variation,

2013–2017

Coefficient of
variation,

2018–2022
China 40.1 38.1 0.016 0.078
Canada 18.3 15.1 0.009 0.004
Mexico 10.3 11.0 0.008 0.008
Taiwan 4.1 3.6 0.013 0.021
Germany 3.7 3.2 0.019 0.026
South Korea 3.3 4.5 0.020 0.018
Japan 3.0 1.8 0.019 0.027
United Kingdom 1.7 1.3 0.019 0.030
Israel 1.3 1.5 0.031 0.140
Thailand 1.2 1.7 0.035 0.083

Top 10 Sources 86.9 81.8 - -

sourcing, where volatility in trade costs is measured by the coefficient of variation of the

data across years. The dependent variable is the customs value of U.S. imports by industry

k, country i, and year t. The independent variable is the log of the coefficient of variation

in trade costs by industry and country and a set of industry-year and source country-year

fixed effects. The fixed effects capture country-specific and industry-specific factors such as

producer price changes, national policies, and other factors that vary across these dimensions.

Both Ordinary Least Squares (OLS) and Poisson Pseudo Maximum Likelihood (PPML)

regressions are used below. Standard errors are clustered by source country to account for

intra-cluster correlation in the error terms at the country level. The regression equations

with trade cost volatility terms are:

OLS: ln(xikt) = β ln(CVik) + ρkt + υit + ϵikt

PPML: xikt = exp[β ln(CVik) + ρkt + υit]× ϵikt

The specification above assumes that importers maintain a constant value of trade cost

volatility for the entire period. If firms instead update their measure of volatility over time,

a time-varying measure of trade cost volatility may be more appropriate. Allowing the
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trade cost term to vary over time also lets us introduce an additional fixed effect into the

specification. The time-varying mean trade cost µikt is the average cost for each industry

and source country for the most recent five years, thus µikt =
1
5

∑t
t−4 τikt. The time-varying

standard deviation and coefficient of variation are defined over the same period, as sikt =√∑t
t−4(τikt−µikt)2

5
and CVikt = sikt

µikt
. For consistency with the prior specification, in this

model specification we incorporate an additional four years of data (2009–2012), so the

time-varying CV is defined for the same 2013–2022 period as the time-invariant CV. The

regression equations with time-varying trade cost volatility term are:

OLS: ln(xikt) = β ln(CVikt) + ρkt + υit + ϕik + ϵikt

PPML: xikt = exp[β ln(CVikt) + ρkt + υit + ϕik]× ϵikt

As noted in section 3 above, the model is estimated using a 10-year panel data set

(2013–2022) downloaded from USITC’s DataWeb. The panel includes all 6-digit NAICS

industries within the NAICS 3261 4-digit plastics grouping, including NAICS 326111 (plastic

bag and pouch), 326112 (plastic packaging film and sheet), 326113 (unlaminated plastic

film and sheet), 326121 (unlaminated plastic profile shape), 326122 (plastic pipe and pipe

fitting), 326160 (plastic bottles), 326191 (plastic plumbing fixtures), 326192 (other plastic

product manufacturing), and 326199 (other plastic product manufacturing).9 In the second

set of regressions with the time-varying means, four additional years (2009–2012) are used

to calculate the coefficient of variation for the first years of the panel. These additional four

years are not included in the estimation, they are only used to calculate the time-varying

mean in the first four years of the panel. For the time-invariant mean estimates, countries

that have only one year of non-zero trade in the data set (from 2013–2022) are dropped
9The Census Bureau changed the HTS concordance for three of these NAICS 6-digit products in 2012.

For consistency, when calculating the time-varying mean, we applied a consistent concordance to all years.
Specifically, HTS 3923.21 and 3923.29 were concorded to NAICS 326111 from 2009–2011; HTS 3921.90.4010
was concorded to NAICS 326112 from 2012–2022; and HTS 3918.10.1000, 3918.10.2000, 3918.90.1000,
5904.10.0000, 5904.90.10.00, and 5904.90.90.00 were concorded to NAICS 326192 from 2012–2022.
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from the analysis as a standard deviation could not be calculated.10 All other observations

are included in the analysis. For the time-varying mean estimates, a mean and standard

deviation is calculated only if the observation has more than one non-zero trade flow in the

previous five years.

4.2 Regression Results

Tables 4 and 5 present econometric results under different model specifications. In table

4, the coefficient of variation is calculated as the standard deviation of trade costs by country

and industry, divided by the mean by country and industry, where the standard deviation

and mean are calculated over the entire ten-year panel. Following Borchert et al. (2020), we

include two PPML estimates to examine differences between OLS and PPML results. The

first, “PPML (no zeros),” includes the same observations as in the OLS dataset, i.e., with zero

trade flows excluded.11 The second, “PPML (with zeros),” includes observations with non-

zero trade in the dataset. Only the OLS and “PPML (with zeros)” results are statistically

significant. The first model, OLS with industry-year and source country-year fixed effects,

finds that a one percent increase in trade cost volatility is associated with a 1.9 percent

reduction in imports.12 The “PPML (with zeros)” regression results differ substantially from

the OLS results, finding that a one percent increase in trade cost volatility is associated with

about a 0.4 percent reduction in imports.

For regression results in table 5, the standard deviation and mean trade costs are calcu-

lated over the previous five year period for each country and industry. Results in table 5
10These countries are typically small and would have a negligible impact on the estimates.
11The number of observations in the first and second model are different by six because there were six

singleton observations dropped when using the ppmlhdfe command in Stata. Inclusion of the six additional
observations does not change the estimates or standard errors.

12A one percent increase in trade cost volatility, as measured by the coefficient of variation of trade costs,
can be placed in context using the data. On average across all countries and industries in the data, the
coefficient of variation of trade costs varies by nine percent from 2013 to 2022. That variation fluctuates
significantly by industry and source country.
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Table 4: Time-Invariant CV Regression Results, 2013–2022

Explanatory variable OLS PPML (no zeros) PPML (with zeros)
ln(CVik) -1.94*** -0.40 -0.44*

(0.11) (0.22) (0.19)
Industry-year FE Yes Yes Yes
Source country-year FE Yes Yes Yes
Industry-source country FE No No No
N 6,925 6,919 9,229

Note: clustered standard errors given in parentheses. The dependent variable for the OLS regression is
the log of U.S. imports, by source country, 6-digit NAICS industry, and year. The dependent variable in
the PPML regressions is the level of U.S. imports by source country, 6-digit NAICS industry and year.
The independent variable for both OLS and PPML is the log of the coefficient of variation in trade costs
by country and 6-digit NAICS industry across all ten years in the panel.

are quite similar to those in table 4, showing the same large divergence between OLS and

PPML. The PPML results are larger, around 0.7, and do not depend greatly on the inclusion

or exclusion of zero trade flows in the data. This similarity suggests that the value of using

the PPML estimator is to account for the heteroskedasticity in trade data and not to include

the information contained in the zero trade flows. As suggested in Borchert et al. (2020), a

possible explanation for this is that the source countries with some years of zero U.S. imports

are typically the smaller countries that are discounted in the PPML first order conditions.

Table 5: Five-Year Average CV Regression Results, 2013–2022

Explanatory variable OLS PPML (no zeros) PPML (with zeros)
ln(CVikt) -1.31*** -0.67*** -0.71***

(0.04) (0.07) (0.07)
Industry-year FE Yes Yes Yes
Source country-year FE Yes Yes Yes
Industry-source country FE Yes Yes Yes
N 6,609 6,596 7,494

Note: clustered standard errors given in parentheses. The dependent variable for the OLS regression is
the log of U.S. imports, by source country, 6-digit NAICS industry, and year. The dependent variable in
the PPML regressions is the level of U.S. imports by source country, 6-digit NAICS industry and year.
The independent variable for both OLS and PPML is the log of the coefficient of variation in trade costs
by country and 6-digit NAICS industry for the previous five years in the panel.
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The last model, “PPML (with zeros),” is our preferred specification, finding that a one

percent increase in trade cost volatility is associated with about a 0.7 percent reduction

in U.S. imports. The coefficient of variation in this model, based on trade cost volatility

over the previous five year period, is backward looking and includes information relevant to

an importer making purchasing decisions. The use of a PPML model allows us to capture

information contained in the zero-trade flows and correct for possible heteroskedasticity

in the data. Additionally, industry-year, source-country year, and industry-source country

fixed effects are similar to current gravity specifications and control for country-specific and

industry-specific factors.

5 Monte Carlo Simulation

5.1 Modeling Approach

The previous section found that trade cost volatility is associated with a reduction in

U.S. imports of plastics. To further analyze the impact of trade cost volatility in supply

chains, particularly in downstream prices and production, we constructed a partial equilib-

rium supply chain model of the U.S. market with plastics manufacturing and imports in

the upstream and light truck manufacturing and imports in the downstream.13 The down-

stream light truck manufacturing industry is affected by plastics trade costs through their

production costs. Equation 1 is the upstream plastics price index, where, as before, the

index i refers to the source country of U.S. imports of plastic, pui is the producer price of

plastic that originated in source i, (1 + τui) is the tariff factor on imports from source i, bui

is a demand asymmetry parameter, and σu is the elasticity of substitution across sources of

plastics supply to the U.S. market.14

13The model presented here is an extension to the model in Schreiber (2023).
14In this section, we no longer index by industry k. We perform the analysis for the 4-digit NAICS 3261

industry, "plastic products manufacturing," including all 6-digit plastics industries discussed above.
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z =

(∑
i

bui (pui(1 + τui))
1−σu

) 1
1 − σu

(1)

Equation (2) is the downstream price index, where pdi is the price of the downstream

good (light trucks) originating in country i and (1 + τdi) is the tariff factor on downstream

imports from country i.

P =

(∑
i

bdi (pdi (1 + τdi))
1−σd

) 1
1 − σd

(2)

The price of the downstream domestically-produced good is a function of the upstream

prices it uses as inputs. Equation (3) represents the price of downstream light truck man-

ufacturing. The parameter c is a calibrated cost parameter and w is the price of all other

production inputs, treated as exogenous in the model.15 The upstream good and all other

production inputs are consumed by the downstream in fixed proportions.

pd = (w + c z) (3)

Then the demand for the upstream plastic from source country i, qui, is represented by

Equation (4). This equation is a modified version of a constant elasticity of substitution

(CES) demand equation that incorporates upstream and downstream prices. Demand for

the downstream good produced in country i is represented by Equation (5).

qui =
k c bui

pui (1 + τui)

(pd
P

)1−σd

(
z

pd

)(
pui (1 + τui)

z

)1−σu

(4)

qdi = k bdi P
σd−1 (pd (1 + τdi))

−σd (5)
15The exogeneity assumption is appropriate when the trade policy shock is small and does not impact the

cost of labor and other production inputs.
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Equation (6) describes the supply curve for upstream imports and upstream domestic

production, where aui is a supply parameter and ϵui is the constant elasticity of supply for

upstream goods from country i.

qui = aui pui
ϵui (6)

The model is illustrated in figure 1.

Figure 1: Model Illustration
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5.2 Data Inputs

Several data sources were used to calibrate the model. U.S. imports and exports of plastic

products (NAICS 3261) and light truck products (NAICS 336112) in 2021 were obtained from

USITC’s DataWeb (table 6).16 U.S. domestic production of plastic products and light truck
16The model requires an estimate of U.S. imports of plastic sent to light truck manufacturing. For this

estimate, one could either (i) multiply total U.S. imports of plastic by the share of imported plastic sent to
light truck manufacturing calculated from the BEA input-output accounts data, or (ii) multiply U.S. domestic
production of light trucks by the cost share of imported plastic obtained from the BEA input-output accounts
data. We used the latter calculation in this application.
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manufacturing in 2021 were obtained from the U.S. Census Annual Survey of Manufactures.17

The cost share of plastic in light truck manufacturing was calculated from the BEA’s 2012

Input-Output Accounts Data, the latest available for NAICS 6-digit level data.18 The share

of plastics used in light truck manufacturing that are sourced from imports was obtained

from the BEA’s 2012 import matrices data. The 2021 trade cost estimate on U.S. imports

of plastics was calculated using U.S. import data by taking the ratio of the landed duty-paid

value and customs value.

Table 6: Monte Carlo Simulation Data Inputs, 2021

Data input Value (in millions
of dollars and %)

U.S. imports of light trucks 24,760.1
U.S. exports of light trucks 11,493.7
U.S. domestic production of light trucks 210,491.5
Cost share of plastic in light truck manufacturing 4.6%
Import share of plastic in light truck manufacturing 17.6%
U.S. imports of plastic products used in light truck manufacturing 1,611.1
U.S. domestic production of plastic products used in light truck man-
ufacturing 7,542.8

Note: Import and export data were obtained from USITC’s DataWeb. Domestic production data were
obtained from the U.S. Census Annual Survey of Manufactures. Cost shares and import shares were obtained
from the BEA’s Input-Output Accounts Data.

The model also requires a number of elasticity estimates described in the modeling ap-

proach above. It requires a price elasticity of supply for domestic plastic and a price elasticity

of supply for imported plastic. A medium elasticity value of five was used. The model also

needs an elasticity of substitution estimate for upstream varieties of plastic and for down-

stream varieties of light trucks. In the downstream, the elasticity of substitution across

varieties of light trucks is estimated using the trade cost method in Riker (2020). Using U.S.
17This analysis used 2021 data to calibrate the model because 2022 domestic production data was not yet

available.
18The plastics data are at the NAICS 4-digit level of aggregation. Light truck manufacturing data are at

the NAICS 6-digit level. Therefore, we use the 6-digit Input-Output data to calculate the cost shares for
light truck manufacturing.
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import data of light trucks, disaggregated by source country, district of entry, and year, the

elasticity of substitution was estimated as 6.22. For the upstream elasticity of substitution

between plastics sources, we consider two different specifications. We first test five differ-

ent values evenly spaced between 2 and 10 to show a range of model outcomes under low,

medium, and high elasticity values. Second, we estimate the plastics elasticity of substitution

point estimate and standard error (4.17 and 0.22, respectively) using the trade cost method

from Riker (2020). In this second specification, a normal distribution of elasticity values is

drawn using this point estimate and standard deviation and used as a model input in the

Monte Carlo simulation described below.

5.3 Monte Carlo Simulation Results

We use Monte Carlo simulation to estimate the impact of plastics trade cost volatility

in the light truck manufacturing supply chain. The model incorporates a distribution of

trade costs and estimates a distribution of model outcomes (including domestic production

of plastics and light trucks). The mean and standard deviation of the trade cost distribution

fed into the model is estimated from historical volatility in trade costs from 2013–2022 using

U.S. import data, as shown in table 2.

The underlying model is first calibrated to the initial market equilibrium using the data

inputs listed above. This includes an estimate of trade costs in U.S. imports in 2021. Then,

the model draws 300 observations of trade costs as model inputs and a new market equi-

librium is estimated with each realized trade cost value. Economic outcomes are recorded

for each of the 300 draws of the trade cost distribution. Then, volatility in the inputs is

compared to volatility in downstream domestic production of light trucks.

In the first Monte Carlo simulation, we run the model with a distribution of trade costs

under 5 different values of the upstream plastics elasticity of substitution (σu). First, the

Monte Carlo is run assuming 100% historical variation in trade costs. Then, we reduce the
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Figure 2: Comparison of Volatility in Inputs and Outputs, by Upstream Elasticity of
Substitution Value

standard deviation used when drawing values for the trade cost distribution by 10 percent,

simulating a 10 percent reduction in historical volatility in trade costs. After, we continue

to reduce volatility in trade costs (90% of historical volatility, 80% of historical volatility,

70%, and so on) to simulate the effects on downstream outcomes of a reduction in volatility

in trade costs. Model results are graphed in figure 2.

Each line in figure 2 represents a different assumption about the elasticity of substitution

in the upstream industry. The elasticity of substitution does not affect the plastics cost share

coefficient of variation, as that is a model input based on only import data. The elasticity of

substitution does impact the U.S. domestic truck production coefficient of variation, as that is

a modeled outcome and the magnitude depends on the willingness of truck producers to shift

plastics sourcing. A higher elasticity of substitution value shifts the curve vertically as the
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same level of plastics volatility leads to more volatility in downstream truck manufacturing.

In the second Monte Carlo simulation, we run the model with a distribution of elasticity

of substitution estimates. The distribution mean and standard deviation was econometrically

estimated using the trade cost method presented in Riker (2020). The econometric method

uses the same variation in international trade costs to estimate the elasticity using U.S.

import data. Using this method, the elasticity point estimate is 4.17 and the standard

error was 0.22. These values were used in the Monte Carlo simulation to draw a normal

distribution of elasticity of substitution estimates.19

Figure 3: Comparison of Volatility in Inputs and Outputs

Results of the Monte Carlo simulation are illustrated in figure 3. The simulation was

run first assuming full 100 percent historical volatility in trade costs first. After, we reduce
19Note that the two distributions fed into the Monte Carlo simulation—the trade cost distribution and the

elasticity of substitution distribution—were drawn independently. An interesting extension to this research
would be to have a joint distribution of trade cost estimates and elasticity of substitution estimates. Since
both distributions are dependent on historical variation in trade costs, the model estimates of downstream
variability here may be understated.
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volatility in trade costs in 10 percent increments to estimate how a reduction in volatility in

trade costs transfers to downstream outcomes. The simulations show that each subsequent

reduction in plastics trade cost volatility lead to a roughly constant reduction in volatility

in light truck manufacturing output.

6 Conclusion

This paper presents and applies two models to illustrates the impact of trade cost volatil-

ity on downstream consumers in a supply chain. First, the econometric specification found

that an increase in plastics trade cost volatility is associated with a statistically significant

decrease in plastics imports from a specific source country. This suggests that import sourc-

ing is changing following the increase in trade cost volatility in recent years. Next, the paper

describes a Monte Carlo simulation to estimate the impact of plastics trade cost volatility on

downstream outcomes for light truck manufacturing. The underlying model is an upstream-

downstream model where changes in plastic prices flow directly into light truck production

costs. The Monte Carlo simulation showed how a reduction in trade cost volatility would

reduce volatility in downstream outcomes in a roughly proportional manner. This result

is intended to be useful for policy makers who want to lower volatility in manufacturing

outcomes.

In future versions of this paper, it would be interesting to explore the sensitivity of the

Monte Carlo simulation results to model parameters, to test if the linear relationship in

figure 3 holds under differing assumptions. Additionally, it would be informative to build

uncertainty into the model to compare the estimated effects of trade policy uncertainty and

trade cost variability.
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